
Max Flow

A panda is about to give birth at the zoo! Officials anticipate that attendance
will skyrocket to see the new, adorable baby panda. There’s one particular
residential area called “Home” that is full of panda loving families and there’s a
fear that this inflated number of people visiting the zoo will overload the public
transportation system. It will be especially bad in the evening since the zoo
closes about the same time as rush hour, so everyone will be trying to find
spaced on the already crowded buses and subways. As a city planner, you were
given a map of routes from the zoo to Home (shown below), along with the
estimated number of families that could go on each route. Additionally, it was
estimated that 16 families from Home will visit each day, and it’s your task to
figure out if this will overload the public transportation system, and, if it does,
how could the system be improved?

This is another kind of network flow problem, called a maximum flow prob-
lem. Here, what we’re concerned about is the upper bound on the amount of
people that can move through the system. This is a special case of network flow
problems, but it’s also one of the most relevent and easily applicable kinds of
problems. Unlike previous examples, we’re not trying to minimize cost; instead
we’re trying to find the maximum amount of flow, which is defined by the num-
ber of objects moving thrugh the system. In this case, our flow is how many
people can travel from the zoo to Home.

Before we begin the implementation, it’s worth briefly covering some key
points of a network. Typically, the locations we’re looking at are called “nodes”
and the paths between them are “arcs,” which should be familiar to anyone
who has with graph theory. Additionally, nodes that have an excess supply are
called “sources” while nodes with an excess of demand are “sinks.” All other
nodes should have a net change of zero—anything that flows in should also flow
out. In this example, our source is the zoo and our sink is Home, while all the
locations between the two should not supply any people and no people should
stop at them.

With this, we can now construct a model.

Build the model

As always, start by importing Coopr and creating an object of the class model.

from coopr.pyomo import *

model = Model()

Now, we must define our sets. The set of locations, which we’ll call nodes,
is fairly typical. Additionally, we must create a set of arcs. Since each arc
is a tuple from the set of nodes crossed with itself, we must define it slightly
differently. This is very similar to how we defined the routes in the first network
flow problem—in fact, the only difference is the names of the sets.
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Figure 1: A map of the public transportation network from the zoo to Home
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model.nodes = Set()
model.arcs = Set(within=model.nodes*model.nodes)

The “within=” notation implies that we’re creating a subset of something
else—in this case arcs is a subset of all the tuples that could be generated by
the nodes crossed with themselves. This is important since the set of sources
and sinks are going to be defined as subsets of the set of nodes. In code, this
looks like:

model.sources = Set(within=model.nodes)
model.sinks = Set(within=model.nodes)

While we only have one source and sink in this example, it’s often useful to
create a more general model than necessary. This same model can be used next
week to find the maximum flow between three office building and four residential
areas, for example.

We now consider the parameters. Each arc has an upper bound on how
many families can travel along it, so we create a parameter over the set of arcs.

model.upperBound = Param(model.arcs)

We will also create a supply parameter over the set of sources and a demand
parameter for the sinks. Since we’re just looking for the max supply in this
problem, the supply parameter will be arbitrarily large and the demand param-
eter will be 0 when we define them in the data file. This way, the program won’t
accidentally crash with an infeasible model and we can guarantee we achieve the
max flow. However, in other cases it might be useful to have an explicit number
for the supply at each source or demand at each sink, so we include it to make
the model more general.

model.supply = Param(model.sources)
model.demand = Param(model.sinks)

Finally, we need to define a variable. Like the previous examples, this vari-
able will be the amount that goes along each arc; in this case it will be how
many families travel on each path between the zoo and Home. As usual, we
restrict the domain to non negative numbers since, simply put, negative families
don’t make sense.

model.amount = Var(model.arcs, within=NonNegativeReals)

At this point, we must now begin constructing the objective and constraints.
The objective of this problem is to maximize the number of people flowing into
Home, which is a very different objective than what we’ve done before; unlike the
previous cases, we’re not trying to minimize a value. Additionally, in previous
examples we would just take the dot product of the cost and amount vectors,
which isn’t helpful in this case.
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Solving these two problems is pretty simple, fortunately. To begin with, to
maximize the objective we just insert “sense=maximize” into the arguments
the objective takes, which will tell the model to try and maximize this value.
Similarly, we could have put “sense=minimize” in the previous examples, but
since the objective naturally tries to minimize the rule it takes in, this would
be redundant.

The other problem we ran into was how to measure the number of people
who arrive at Home. The most logical way to do this is take every arc that ends
at home, find the amount of people traveling along it, and sum those values
together. For the code, though, we’re being a bit more general since in this
abstract model there could be multiple sinks (rather than just Home). The
logic is still the same: just find the amount traveling on each arc that goes into
a sink and add those values together.

def totalRule(model):
expression = sum(
model.amount[i,j]
for (i, j) in model.arcs
if j in model.sinks

)
return expression

model.maxFlow = Objective(rule=totalRule, sense=maximize)

Another important element of this model is the maximum amount that can
travel on each route. Without that, the max flow problem would be trivial: the
answer is always infinity! To avoid this situation, we need to ensure that the
amount traveling along each arc is less than or equal to the upper bound of how
much can move along the arc. One part that deserves note is that we give the
constraint the set of arcs as an argument, but in defining the rule we give it
two arguements: arcIn and arcOut. The reason for this is because the set of
arcs is itself a set of tuples, so when we feed it in as an argument we’re actually
supplying two arguements. The final result will be this:

def maxRule(arcIn, arcOut, model):
constraint_equation = (model.amount[arcIn, arcOut]
<= model.upperBound[arcIn, arcOut])

return constraint_equation

model.loadOnArc = Constraint(model.arcs, rule=maxRule)

We have one last rule to consider: the flow rule. The idea behind the flow rule
is that something traveling along the network won’t just appear or disappear.
The amount that flows into a location must be equal to the amount that flows
out, with the exception of sinks and sources. It’s this last part that makes the
constraint complicated since we now have three cases—the node is regular, a
source or a sink—that must each be treated slightly differently.
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What we will do is define a flow rule that takes in a node as an argument,
then use “if...then...else” statements to look at all possible cases. In each case
we’ll create a value called “constraint equation” and at the end the flow rule
will return the constraint equation. As a rough outline of what the code will
look like, we have

def flowRule(node, model):
if node in model.sources:
...
constraint_equation =...

elif node in model.sinks:
...
constraint_equation = ...

else:
...
constraint_equation = ...

return constraint_equation

model.flow = Constraint(model.nodes, rule=flowRule)

We begin with the case where the node is a source, we want to ensure that
the flow out is less than or equal to the supply of the node. To find flow out of
a source, we just find every arc that begins at the source and sum the amounts
on them together, must like we did when defining the objective earlier. We then
just need to make sure that the flow out of each arc will be less than its supply.
In code, this will look like

if node in model.sources:
flow_out = sum(
model.amount[i,j]
for (i,j) in model.arcs
if i == node

)
constraint_equation = (flow_out <= model.supply[node])

In the next case we look at, the node is a sink. This is structured almost
identically to the previous case, the main difference being we’re looking at where
the arcs end rather than begin, and we need to be greater than or equal to
demand.

elif node in model.sinks:
flow_in = sum(
model.amount[i,j]
for (i,j) in model.arcs
if j == node
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)
constraint_equation = (flow_in >= model.demand[node])

Finally, we have the case where the node is “normal.” Here, we need to en-
sure that the amount flowing in is equal to the amount flowing out. This is much
like the previous two cases combined: we create an “amountIn” value that adds
up the amount on each arc ending in the node, and we create an “amountOut”
value that adds the amount on each arc that originates at the node. We then
create a constraint equation to ensure that amountIn and amountOut are equal.

else:
amountIn = sum(
model.amount[i,j]
for (i,j) in model.arcs
if j == node

)
amountOut = sum(
model.amount[i,j]
for (i,j) in model.arcs
if i == node

)
constraint_equation = (amountIn == amountOut)

Putting these three cases together, along with the outline we had before,
yields the constraint we wanted.

def flowRule(node, model):
if node in model.sources:

flow_out = sum(
model.amount[i,j]
for (i,j) in model.arcs
if i == node

)
constraint_equation = (flow_out <= model.supply[node])

elif node in model.sinks:
flow_in = sum(
model.amount[i,j]
for (i,j) in model.arcs
if j == node

)
constraint_equation = (flow_in >= model.demand[node])

else:
amountIn = sum(
model.amount[i,j]
for (i,j) in model.arcs
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if j == node
)
amountOut = sum(
model.amount[i,j]
for (i,j) in model.arcs
if i == node

)
constraint_equation = (amountIn == amountOut)

return constraint_equation

model.flow = Constraint(model.nodes, rule=flowRule)

Save this model as a .py file before continuing.

Data entry

The data entry for this problem is fairly routine after the previous examples.
We begin by defining our sets. Remember, arcs is a subset of nodes crossed
with itself and sources and sinsk are subsets of nodes. This just means you
can’t input arbitrary values—they have to be values from the proper sets.

set nodes := Zoo A B C D E Home;
set arcs := (Zoo,A) (Zoo,B) (A,C) (A,D) (B,A) (B,C) (C,D) (C,E)

(D,E) (D,Home) (E,Home);
set sources := Zoo;
set sinks := Home;

We also need to define the supply and demand parameters. These are es-
pecially easy because the sets they’re over only have one element. Remember,
for this example the supply is abitrarily large and demand is zero so we won’t
accidentally create an infeasible model.

param: supply :=
Zoo 1000000;

param: demand :=
Home 0;

Finally, we create the upper bound parameter. This, is a paramater over
tuples, but we must omit the parentheses and commas that usually denote such
a tuple. Otherwise, it’s formated the same way as the above parameters.

param: upperBound :=
Zoo A 11
Zoo B 8
A C 5
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A D 8
B A 4
B C 3
C D 2
C E 4
D E 5
D Home 8
E Home 6;

Now, save this file as a .dat file.

Solution

For a Linux machine, go to the command line and input “pyomo [model].py
[model].dat” where [model] is replaced with what you named the file. If using the
files from the Coopr directory, it would be “pyomo maxFlow.py maxFlow.dat”

# ==========================================================
# = Solver Results =
# ==========================================================

# ----------------------------------------------------------
# Problem Information
# ----------------------------------------------------------
Problem:
- Lower bound: -inf
Upper bound: 14
Number of objectives: 1
Number of constraints: 18
Number of variables: 12
Number of nonzeros: 32
Sense: maximize

# ----------------------------------------------------------
# Solver Information
# ----------------------------------------------------------
Solver:
- Status: ok
Termination condition: unknown
Error rc: 0

# ----------------------------------------------------------
# Solution Information
# ----------------------------------------------------------
Solution:
- number of solutions: 1
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number of solutions displayed: 1
- Gap: 0.0
Status: optimal
Objective:
f:
Id: 0
Value: 14

Variable:
amount[D,Home]:
Id: 0
Value: 8

amount[E,Home]:
Id: 1
Value: 6

amount[B,C]:
Id: 2
Value: 3

amount[B,A]:
Id: 3
Value: 4

amount[Zoo,B]:
Id: 4
Value: 7

amount[Zoo,A]:
Id: 5
Value: 7

amount[D,E]:
Id: 6
Value: 2

amount[A,C]:
Id: 7
Value: 3

amount[A,D]:
Id: 8
Value: 8

amount[C,D]:
Id: 9
Value: 2

amount[C,E]:
Id: 10
Value: 4

This output tells us how many people should travel along each route for the
optimal solution. More importantly, though, is the line which says our objective
value is 14. This means that at most 14 families can arrive at Home. However,

9



we were told 16 families from Home were expected to visit the zoo each day.
Therefore, unless something is done, the public transportation network in place
will be overloaded.

In looking at the data, your bosses noticed that not many people can travel
the route from C to D; it only has room for 2 more families. It’s decided to add
more buses to that route, and after new calculations are done it’s believed that
up to 12 families will be able to travel that route! Your bosses believe they’ve
solved the problem, but you’re not so sure. Let’s double check the results to see
what happens.

Change the upper bound information on the arc from C to D so it carries
12 people rather than 2 and run Pyomo again. The result is...pretty much the
same. While the amount on each path might be different, the overall max flow
is still the same. Why is that?

Only two paths lead to Home, one beginning at D and one beginning at
E. The former path can hold up to 8 families and the latter can hold 6. This
means, at most 8 + 6 = 14 families will be able to travel into Home. So to solve
this problem it’s not enough to boost the amount of people who travel from C
to D, but also from D to Home (or E to Home). We change the upper bound of
the route from D to Home to 10 and run the model again. This time our max
flow is 16! Note, though, that if the bound on the arc from C to D is still 2 then
the max flow is still only 14.

We can now present our results, recommending what needs to be changed—
increasing the number of buses on the C to D and D to Home routes—in order
to boost the max flow through the public transportation network to 16 families
to accommodate the families traveling to the zoo to see the adorable panda
baby.
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